بکارگیری تکنیکهای خوشهبندی و الگوریتم ژنتیک در بهینهسازی درختان تصمیم گیری برای اعتبارسنجی مشتریان بانک ها
Authors
Abstract:
درختان تصمیم گیری به عنوان یکی از تکنیک های داده کاوی کاربرد زیادی در اعتبارسنجی مشتریان بانک و شناسایی آن ها برای اعطای تسهیلات اعتباری دارد. مسئله اصلی در پیچیدگی درختان تصمیم گیری، اندازه بیش از حد، عدم انعطاف پذیری و دقت کم در طبقه بندی است. هدف از این مقاله ارائه مدل ترکیبی در بهینه سازی درختان تصمیم گیری توسط تکنیک الگوریتم ژنتیک به منظور حل مسائل ذکر شده در فوق برای اعتبارسنجی مشتریان بانک است. به نظر می رسد بتوان با انتخاب ویژگی های مناسب و ساخت درختان تصمیم گیری توسط الگوریتم ژنتیک به کاهش پیچیدگی و افزایش انعطاف پذیری درختان تصمیم گیری پرداخت. در مدل ترکیبی پیشنهادی ابتدا داده های اعتباری توسط تکنیک خوشه بندی SimpleKmeans به دو خوشه تقسیم می شوند. سپس با استفاده از الگوریتم ژنتیک، پنج الگوریتم انتخاب ویژگی مبتنی بر سه رویکرد فیلتر، Wrapper و طرح جاسازی شده بر پایه درخت تصمیم گیری ژنتیکی، به انتخاب ویژگی های اعتبارسنجی مهم در مجموعه داده می پردازند. در ادامه پنج درخت تصمیم گیری مبتنی بر الگوریتم C4.5 در هر خوشه با مجموعه ویژگی های منتخب ساخته می شود. بهترین درختان تصمیم گیری در هر خوشه مبتنی بر معیارهای بهینگی مورد نظر در این مقاله انتخاب شده و با هم ترکیب می شوند تا درخت تصمیم گیری نهایی برای اعتبارسنجی مشتریان بانک ایجاد شود. ابزار یادگیری ماشین وکا و نرم افزار GATree برای رسیدن به نتایج بکار گرفته شده است. نتایج پژوهش نشان می دهد که استفاده از مدل ترکیبی پیشنهادی در ساخت درخت تصمیم گیری منجر به افزایش دقت طبقه بندی نسبت به بسیاری از الگوریتم های مقایسه شده در این مقاله می شود؛ ولی پیچیدگی الگوریتم مدل ترکیبی پیشنهادی از برخی الگوریتم های طبقه بندی مقایسه شده در این مقاله بیشتر است.
similar resources
بکارگیری تکنیک های خوشه بندی و الگوریتم ژنتیک در بهینه سازی درختان تصمیم گیری برای اعتبارسنجی مشتریان بانک ها
درختان تصمیم گیری به عنوان یکی از تکنیک های داده کاوی کاربرد زیادی در اعتبارسنجی مشتریان بانک وشناسایی آن ها برای اعطای تسهیلات اعتباری دارد. مسئله اصلی در پیچیدگی درختان تصمیم گیری، اندازه بیش از حد،عدم انعطاف پذیری و دقت کم در طبقه بندی است. هدف از این مقاله ارائه مدل ترکیبی در بهینه سازی درختان تصمیمگیری توسط تکنیک الگوریتم ژنتیک به منظور حل مسائل ذکر شده در فوق برای اعتبارسنجی مشتریان بانک ...
full textبکارگیری تکنیک های خوشه بندی و الگوریتم ژنتیک در بهینه سازی درختان تصمیم گیری برای اعتبارسنجی مشتریان بانک ها
درختان تصمیم گیری به عنوان یکی از تکنیک های داده کاوی کاربرد زیادی در اعتبارسنجی مشتریان بانک و شناسایی آن ها برای اعطای تسهیلات اعتباری دارد. مسئله اصلی در پیچیدگی درختان تصمیم گیری، اندازه بیش از حد، عدم انعطاف پذیری و دقت کم در طبقه بندی است. هدف از این مقاله ارائه مدل ترکیبی در بهینه سازی درختان تصمیم گیری توسط تکنیک الگوریتم ژنتیک به منظور حل مسائل ذکر شده در فوق برای اعتبارسنجی مشتریان با...
full textبکارگیری تکنیک های خوشه بندی و الگوریتم ژنتیک در بهینه سازی درختان تصمیم گیری برای اعتبارسنجی مشتریان بانک ها
درختان تصمیم گیری به عنوان یکی از تکنیک های داده کاوی کاربرد زیادی در اعتبارسنجی مشتریان بانک وشناسایی آن ها برای اعطای تسهیلات اعتباری دارد. مسئله اصلی در پیچیدگی درختان تصمیم گیری، اندازه بیش از حد،عدم انعطاف پذیری و دقت کم در طبقه بندی است. هدف از این مقاله ارائه مدل ترکیبی در بهینه سازی درختان تصمیمگیری توسط تکنیک الگوریتم ژنتیک به منظور حل مسائل ذکر شده در فوق برای اعتبارسنجی مشتریان بانک ...
full textبه کارگیری الگوریتم ژنتیک در بهینه سازی درختان تصمیم گیری برای اعتبارسنجی مشتریان بانک ها
درختان تصمیم گیری به عنوان یکی از تکنیک های داده کاوی می توانند به اعتبارسنجی مشتریان بانکی بپردازند. مسئله ی اصلی ساخت درختان تصمیم گیری است که بتوانند به طور بهینه مشتریان را طبقه بندی کنند. در این مقاله یک مدل مناسب اعتبارسنجی مشتریان بانک ها برای اعطای تسهیلات اعتباری متناسب با هر طبقه مبتنی بر الگوریتم ژنتیک ارایه می شود. الگوریتم های ژنتیک می توانند با انتخاب ویژگی های مناسب و ساخت درختان...
full textبه کارگیری الگوریتم ژنتیک در بهینهسازی درختان تصمیمگیری برای اعتبارسنجی مشتریان بانکها
درختان تصمیمگیری به عنوان یکی از تکنیکهای دادهکاوی میتوانند به اعتبارسنجی مشتریان بانکی بپردازند. مسئلهی اصلی ساخت درختان تصمیمگیری است که بتوانند به طور بهینه مشتریان را طبقهبندی کنند. در این مقاله یک مدل مناسب اعتبارسنجی مشتریان بانکها برای اعطای تسهیلات اعتباری متناسب با هر طبقه مبتنی بر الگوریتم ژنتیک ارایه میشود. الگوریتمهای ژنتیک میتوانند با انتخاب ویژگیهای مناسب و ساخ...
full textارائه مدلی برای اعتبارسنجی مشتریان در بانک صنعت و معدن
یکی از فعالیت های عمده بانکها، تخصیص منابع است. مهمترین ریسکی که این فعالیت را تهدید میکند، ریسک عدم ایفای تعهدات گیرنده تسهیلات میباشد. یکی از راههایی که میتوان با استفاده از آن به بهره گیری مناسب از فرصت های سرمایه گذاری و همچنین جلوگیری از به هدر رفتن منابع کمک کرد، پیش بینی درماندگی مالی و احتمال نکول است. در این پژوهش، با استفاده از مدل تحلیلی تمایزی چند متغیره، به پیش بینی نکول وام شرکت...
full textMy Resources
Journal title
volume 24 issue شماره 1 (پیاپی 98)
pages 15- 34
publication date 2013-04-21
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023